Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Journal of Biological Chemistry ; 299(3 Supplement):S84, 2023.
Article in English | EMBASE | ID: covidwho-20236838

ABSTRACT

The ongoing SARS-CoV-2 pandemic continues to sicken millions worldwide and fundamentally change the way people interact with each other. In order to better characterize the SARS-CoV-2 virus and potentially develop methods of inhibition for further spread of the disease, this research project focused on synthesizing and characterizing the trans-membrane region of the accessory protein ORF7a. ORF7a has been implicated in proper viral assembly, leading to the idea that inhibition of this protein could prevent viral copies from being produced and halt the spread of the virus. The goal of this project was to determine the oligomerization state of the protein through a fluorescence assay in order to better understand the quaternary structure of the ORF7a complex and how it folds. The fluorescence assay is performed using three different samples of the synthesized peptide: one labeled with a TAMRA fluorophore, one labeled with a NBD fluorophore, and the last is unlabeled. After determining the oligomerization state of the protein, potential inhibitors could be synthesized and tested for their efficacy at inhibiting the function of the protein. Further applications of these inhibitors on other viruses can be explored due to the highly conserved nature of transmembrane domains across multiple viral families. Synthesis of the protein was done using a Solid Phase Peptide Synthesis (SPPS) technique and multiple batches of all three samples of peptide have been generated. Characterization and purification were done using High Performance Liquid Chromatography (HPLC) as well as Liquid Chromatography Mass Spectrometry (LCMS). Current research focuses on the purification and quantification of purified ORF7a oligopeptide for implementation of the fluorescence assay. -Hampden-Sydney College Office of Undergraduate Research.Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.

2.
The Science Teacher ; 90(3):60-64, 2023.
Article in English | ProQuest Central | ID: covidwho-20232257

ABSTRACT

The presentation contained information about the virus, how it spreads, the vaccine, who should and should not take it, when it is recommended to be taken, how it invokes an immune response on a cellular level, and what role protein synthesis plays in the vaccine. Students and their partners were given one of seven viruses to research: measles, mumps, rubella, influenza, hepatitis B, rabies, or COVID-19. Students researched the disease and its vaccine type using credible sources, such as the Centers for Disease Control and Prevention (CDC), the World Health Organization (WHO), Johns Hopkins University, etc. Students answered the following questions: * How does the virus spread? * What are the symptoms of the virus? * How common is the virus? (statistical number) * What does the virus look like? (include picture with antigens shown) * When is the vaccine recommended by the CDC? * How often does the booster for the vaccine need to be taken? * Who should not receive the vaccine? * How does the vaccine work on a cellular level? (Be specific about the type of vaccine and how it invokes an immune response) * What role does protein synthesis play in the vaccine? * What is the vaccine efficacy or effectiveness? * Does the vaccine do any of the following: * Change the host cell's DNA? * Give the person the disease?

3.
International Journal of Endocrinology and Metabolism ; 21(2) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2325145

ABSTRACT

Context: The coronavirus disease 2019 (COVID-19) pandemic is still a cause of worldwide health concern. Diabetes and its associated comorbidities are risk factors for mortality and morbidity in COVID-19. Selecting the right antidiabetic drug to achieve optimal glycemic control might mitigate some of the negative impacts of diabetes. Metformin continues to be the most widely administered antidiabetic agent. There is evidence of its beneficial outcome in COVID-19 independent of its glucose-lowering effect. Evidence Acquisition: A thorough literature search was conducted in PubMed, Google Scholar, Scopus, and Web of Science to identify studies investigating metformin in COVID-19. Result(s): Several overlapping mechanisms have been proposed to explain its antiviral properties. It could bring about conformational changes in the angiotensin-converting enzyme-2 receptor and decrease viral entry. The effects on the mammalian target of the rapamycin pathway and cellular pH have been proposed to reduce viral protein synthesis and replication. The immunomodulatory effects of metformin might counter the detrimental effects of hyperinflammation associated with COVID-19. Conclusion(s): These findings call for broader metformin usage to manage hyperglycemia in COVID-19.Copyright © 2023, International Journal of Endocrinology and Metabolism.

4.
Topics in Antiviral Medicine ; 31(2):215, 2023.
Article in English | EMBASE | ID: covidwho-2318132

ABSTRACT

Background: Different viruses employ similar pathways for replication, revealing key intracellular hotspots to target with host-directed therapies and achieve a broad-spectrum antiviral activity. Plitidepsin is a clinically approved antitumoral agent that blocks the elongation factor eEF1A required for protein translation. This drug counteracts SARS-CoV-2 replication and shows a favorable safety profile in COVID-19 patients. Yet, the precise antiviral mechanism of action of plitidepsin remains unknown. Method(s): Here we used a deep quantitative proteomic analysis to measure the impact of plitidepsin on the proteome of SARS-CoV-2-infected Vero E6 cells. This was complemented with transmission electron microscopy assays, which unraveled the subcellular and morphological changes associated to plitidepsin treatment. In addition, we performed functional in vitro assays to dissect the antiviral activity of plitidepsin against SARS-CoV-2 and other viruses. Result(s): We found that this drug inhibited the synthesis of all SARS-CoV-2 proteins in a dose-dependent manner. These included the R1AB polyproteins, which facilitate the synthesis of non-structural proteins involved in the formation of double membrane vesicles (DMV) required for viral replication. Plitidepsin reduced DMV formation and the morphogenesis of new viruses, having a greater impact on viral than on host proteins. Less than 14% of the cellular proteome was significantly affected by plitidepsin, inducing the up-regulation of key molecules associated with protein biosynthesis, such as the translation initiation factors eIF4A2 and eIF2S3. Therefore, plitidepsin induced a compensatory state that rescued protein translation. This proteostatic response explains how cells preserve the cellular proteome after treatment with a translation inhibitor such as plitidepsin. In addition, it suggests that plitidepsin could inhibit other RNA-dependent and non-integrated DNA viruses, as we confirmed in vitro using Zika virus, Hepatitis C virus replicon and Herpes simplex virus. However, the compensatory proteostasis induced by plitidespin also explains why this drug failed to inhibit the replication of integrated DNA proviruses such as HIV-1. Conclusion(s): Unraveling the mechanism of action of host-directed therapies like plitidepsin is imperative to define the indications and antiviral profile of these compounds. This knowledge will be key to develop broad-spectrum treatments and have them ready to deploy when future pandemic viruses break through.

5.
Journal of Biological Chemistry ; 299(3 Supplement):S134-S135, 2023.
Article in English | EMBASE | ID: covidwho-2317120

ABSTRACT

The transmembrane domains of viral proteins are highly conserved and crucial to normal viral function. Oligomeric transmembrane domains present novel opportunities for drug development, as their disruption can prevent the assembly of the virus. The Reichart lab is particularly interested in developing retro-inverso peptide inhibitors. Retro-inverso peptides are peptides using D-amino acids mirroring a region of target protein, which allows the peptide to inhibit viral assembly, but they are also significantly less likely to be catabolized by natural metabolic or immunologic processes. The efficacy of these inhibitors is governed largely by the extent to which they mirror the target protein, making highly conserved regions, such as transmembrane domains, ideal target regions for these inhibitors. The primary technique in the literature for the investigation of oligomerization states uses fluorescence spectroscopy. We are now working on developing a novel alternative system to evaluate protein oligomerization using spin-labeled peptides that are directly incorporated into the peptide sequence. Direct incorporation of the spin-label into the peptide sequence is a more powerful technique than the standard procedures used in the literature. In particular, the ability to incorporate spin labels in various positions within the protein can give novel insights into the relative depth of the protein within a membrane, which is very difficult to study using other techniques and not possible using the fluorescence technique. The transmembrane domains of proteins with known and well-characterized monomer and trimer standard oligomerization states were synthesized using an Fmoc Solid- Phase Peptide Synthesis (SPPS) procedure incorporating an Fmoc-2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid, (Fmoc-TOAC) instead of an alanine. Direct incorporation of stable N-oxide spin labels, which can be contrasted to labeling cysteine residues after the protein synthesis, has been used for the investigation of the secondary structure of proteins for decades, but the application of this spin labeling technique to study the oligomerization states of transmembrane domains of proteins is an understudied application. The products of SPPS were analyzed using a Liquid Chromatography Mass Spectroscopy instrument and purified using High Performance Liquid Chromatography. The spin-label was then deprotected and evaluated using Electron Spin Resonance (ESR) Spectroscopy. There are two primary future directions following this research project: first, the generation of viral proteins with spin labels incorporated in different positions to determine the relative depth of each position within the membrane;second, the incorporation of spin labels into SARS-CoV- 2 proteins to develop a model for in vitro evaluation of retro-inverso peptide assembly inhibitors. -Hampden-Sydney College Office of Undergraduate Research.Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.

6.
Topics in Antiviral Medicine ; 31(2):215-216, 2023.
Article in English | EMBASE | ID: covidwho-2314219

ABSTRACT

Background: The rapid emergence of the SARS-CoV-2 Omicron variant that evades many therapies illustrates the need for antiviral treatments with high genetic barriers to resistance. The small molecule PAV-104, identified through a moderate-throughput screen involving cell-free protein synthesis, was recently shown to target a subset of host protein assembly machinery in a manner specific to viral assembly with minimal host toxicity. The chemotype shows broad activity against respiratory viral pathogens, including Orthomyxoviridae, Paramyxoviridae, Adenoviridae, Herpesviridae, and Picornaviridae, with low susceptibility to evolutionary escape. Here, we investigated the capacity of PAV-104 to inhibit SARS-CoV-2 replication in human airway epithelial cells (AECs). Method(s): Dose-dependent cytotoxicity of PAV-104 in Calu-3 cells was determined by MTT assay. Calu-3 cells were infected with SARS-CoV-2 isolate USA-WA1/2020 (MOI=0.01). Primary AECs were isolated from healthy donor lung transplant tissue, cultured at air liquid interface (ALI), and infected with SARS-CoV-2 Gamma, Delta, and Omicron variants (MOI=0.1). SARS-CoV-2 replication was assessed by RT-PCR quantitation of the N gene, immunofluorescence assay (IFA) of nucleocapsid (N) protein, and titration of supernatant (TCID50). Transient co-expression of four SARS-CoV-2 structural proteins (N, M, S, E) to produce virus-like particles (VLPs) was used to study the effect of PAV-104 on viral assembly. Drug resin affinity chromatography was performed to study the interaction between PAV-104 and N. Glycerol gradient sedimentation was used to assess N oligomerization. Total RNA-seq and the REACTOME database were used to evaluate PAV-104 effects on the host transcriptome. Result(s): PAV-104 reached 50% cytotoxicity in Calu-3 cells at 3732 nM (Fig.1A). 50 nM PAV-104 inhibited >99% of SARS-CoV-2 infection in Calu-3 cells (p< 0.01) and in primary AECs (p< 0.01) (Fig.1B-E). PAV-104 specifically inhibited SARS-CoV-2 post entry, and suppressed production of SARS-CoV-2 VLPs without affecting viral protein synthesis. PAV-104 interacted with SARS-CoV-2 N and interfered with N oligomerization. Transcriptome analysis revealed that PAV-104 treatment reversed SARS-CoV-2 induction of the interferon and maturation of nucleoprotein signaling pathways. Conclusion(s): PAV-104 is a pan-respiratory virus small molecule inhibitor with promising activity against SARS-CoV-2 in human airway epithelial cells that should be explored in animal models and clinical studies.

7.
ExRNA ; 3(November) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2293782
8.
International Journal of Pharma and Bio Sciences ; 11(3):P1-P6, 2021.
Article in English | EMBASE | ID: covidwho-2293132

ABSTRACT

As we know novel coronavirus is an emergent nuisance in this stipulated period. Corona virus is a group of enveloped viruses, with non-segmented, single stranded & positive sense RNA genomes. Human Corona virus is mainly subdivided into four categories such as 229E, NL63, OC43, HKU1. Epidemiologically it has a greater prevalence in the modern era. The features encountered in the clinical course of the disease are multifarious spanning from cough, sneezing, fever, breathlessness. It may take 2-14 days for a person to notice symptoms after infection. Azithromycin and 8 Hydroxychloroquine both plays an instrumental role for management of COVID-19. Azithromycin is a macrolide antibiotic and it binds with a 50s ribosome then inhibits bacterial protein synthesis. On the other hand 8-Hydroxychloroquine was approved by United State in the year of 1955 .Basically it is used as a antimalarial drugs . Briefly, in inflammatory conditions it binds with toll like receptor & blocks them. 8- hydroxychloroquine increases lysosomal pH in antigen presenting cells . In inflammatory conditions it blocks toll like receptors on plasmacytoid dendritic cells. In our review we focused on the role of Azithromycin, and 8-hydroxychloroquine in Covid-19 .Copyright © 2021 International Journal of Pharma and Bio Sciences. All rights reserved.

9.
N Biotechnol ; 76: 13-22, 2023 Sep 25.
Article in English | MEDLINE | ID: covidwho-2292456

ABSTRACT

This study describes the cell-free biomanufacturing of a broad-spectrum antiviral protein, griffithsin (GRFT) such that it can be produced in microgram quantities with consistent purity and potency in less than 24 h. We demonstrate GRFT production using two independent cell-free systems, one plant and one microbial. Griffithsin purity and quality were verified using standard regulatory metrics. Efficacy was demonstrated in vitro against SARS-CoV-2 and HIV-1 and was nearly identical to that of GRFT expressed in vivo. The proposed production process is efficient and can be readily scaled up and deployed wherever a viral pathogen might emerge. The current emergence of viral variants of SARS-CoV-2 has resulted in frequent updating of existing vaccines and loss of efficacy for front-line monoclonal antibody therapies. Proteins such as GRFT with its efficacious and broad virus neutralizing capability provide a compelling pandemic mitigation strategy to promptly suppress viral emergence at the source of an outbreak.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cell-Free System , Pandemics/prevention & control , SARS-CoV-2
10.
Journal of Clinical Psychiatry ; 82(3) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2276799
11.
J Bioinform Comput Biol ; 21(1): 2350008, 2023 02.
Article in English | MEDLINE | ID: covidwho-2263434

ABSTRACT

MOTIVATION: The synthesis of proteins with novel desired properties is challenging but sought after by the industry and academia. The dominating approach is based on trial-and-error inducing point mutations, assisted by structural information or predictive models built with paired data that are difficult to collect. This study proposes a sequence-based unpaired-sample of novel protein inventor (SUNI) to build ThermalProGAN for generating thermally stable proteins based on sequence information. RESULTS: The ThermalProGAN can strongly mutate the input sequence with a median number of 32 residues. A known normal protein, 1RG0, was used to generate a thermally stable form by mutating 51 residues. After superimposing the two structures, high similarity is shown, indicating that the basic function would be conserved. Eighty four molecular dynamics simulation results of 1RG0 and the COVID-19 vaccine candidates with a total simulation time of 840[Formula: see text]ns indicate that the thermal stability increased. CONCLUSION: This proof of concept demonstrated that transfer of a desired protein property from one set of proteins is feasible. Availability and implementation: The source code of ThermalProGAN can be freely accessed at https://github.com/markliou/ThermalProGAN/ with an MIT license. The website is https://thermalprogan.markliou.tw:433. Supplementary information: Supplementary data are available on Github.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Proteins , Software
12.
Front Mol Biosci ; 10: 1128067, 2023.
Article in English | MEDLINE | ID: covidwho-2285726

ABSTRACT

In vitro transcribed, modified messenger RNAs (IVTmRNAs) have been used to vaccinate billions of individuals against the SARS-CoV-2 virus, and are currently being developed for many additional therapeutic applications. IVTmRNAs must be translated into proteins with therapeutic activity by the same cellular machinery that also translates native endogenous transcripts. However, different genesis pathways and routes of entry into target cells as well as the presence of modified nucleotides mean that the way in which IVTmRNAs engage with the translational machinery, and the efficiency with which they are being translated, differs from native mRNAs. This review summarises our current knowledge of commonalities and differences in translation between IVTmRNAs and cellular mRNAs, which is key for the development of future design strategies that can generate IVTmRNAs with improved activity in therapeutic applications.

13.
Bulletin of Russian State Medical University ; 2022(6):99-105, 2022.
Article in English | EMBASE | ID: covidwho-2245181

ABSTRACT

Coronavirus disease COVID-19, caused by the SARS-CoV-2 virus, is highly contagious and has a severe morbidity. Providing care to patients with COVID-19 requires the development of new types of antiviral drugs. The aim of this work is to develop a prodrug for the treatment of coronavirus disease using the antibiotic Amicoumacin A (Ami), the mechanism of action of which is based on translation inhibition. Enzymatic hydrolysis of an inactivated prodrug by the SARS-CoV-2 main protease can lead to the release of the active Ami molecule and, as a consequence, the suppression of protein biosynthesis in infected cells. To test the proposed hypothesis, a five-stage synthesis of an inactivated analogue of Amicoumacin A was carried out. Its in vitro testing with the SARS-CoV-2 recombinant protease MPro showed a low percentage of hydrolysis. Further optimization of the peptide fragment of the inactivated analog recognized by the SARS-CoV-2 MPro protease may lead to an increase in proteolysis and the release of Amicoumacin A.

14.
Medical Immunology (Russia) ; 24(5):903-910, 2022.
Article in Russian | EMBASE | ID: covidwho-2227677

ABSTRACT

To date, there is no consensus explaining the relationship between varying concentrations of IFNgamma and the severity of infection caused by SARS-CoV-2. The aim of this article was to analyze and formulate conclusions from the selected studies and publications, which, in sum, provide a potentially reasonable view on the role of IFNgamma in COVID-19 pathogenesis. This article highlights current data on the immunological role of IFNgamma which affects differentiation of naive T helper cells, acting as a polarizing factor. It activates the major histocompatibility complex (MHC) class I and II, by increasing the expression of MHC I/II subunits, inhibiting replication of the viral particles by initiating activation of interferon-stimulated genes followed by subsequent synthesis of antiviral proteins. Moreover, IFNgamma activates the production of cytokines by T cells, enhancing cytotoxic activity of the T killers. IFNgamma exerts immunostimulatory and immunomodulatory effects via STAT1, SOCS1 and PIAS genes, thus regulating activation of the JAK-STAT signaling pathway. A number of studies were considered where the patterns of changes in serum IFNgamma concentration were examined in viral infections and SARS-CoV-2. We performed a systemic analysis of the results of studies that showed a relationship between high concentrations of IFNgamma and COVID-19 severity. In a number of studies, the significantly high levels of IFNgamma in COVID-19 patients were often associated with a poor outcome of the disease. The median values of the IFNgamma concentration in severe COVID-19 were found to be significantly higher compared to the results obtained in the cases of moderate severity. It shows an increase, in parallel with viral load in the nasopharyngeal samples upon worsening of the clinical condition. Based on the data on the decreased IFNgamma concentrations in convalescent patients, the mechanism of antagonism between IFNgamma and IL-4 is considered, where the decreases serum concentrations of IFNgamma along with increasing level of IL-4 may be an indirect proof of normal adaptive immune response with subsequent development of antibodies to SARS-CoV-2 and gradual elimination of the virus from the body. Moreover, the evidence is discussed that the patients harboring some parasitic infections (Toxoplasma gondii, Cryptosporidium, Blastocystis hominis, Giardia duodenalis, Entamoeba histolytica) with persistently elevated level of IFNgamma are at reduced risk for severe course of COVID-19. Copyright © 2022, SPb RAACI.

15.
Microbiol Spectr ; 11(1): e0370722, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2193578

ABSTRACT

The SARS-CoV-2 virion is composed of four structural proteins: spike (S), nucleocapsid (N), membrane (M), and envelope (E). E spans the membrane a single time and is the smallest, yet most enigmatic of the structural proteins. E is conserved among coronaviruses and has an essential role in virus-mediated pathogenesis. We found that ectopic expression of E had deleterious effects on the host cell as it activated stress responses, leading to LC3 lipidation and phosphorylation of the translation initiation factor eIF2α that resulted in host translational shutoff. During infection E is highly expressed, although only a small fraction is incorporated into virions, suggesting that E activity is regulated and harnessed by the virus to its benefit. Consistently, we found that proteins from heterologous viruses, such as the γ1 34.5 protein of herpes simplex virus 1, prevented deleterious effects of E on the host cell and allowed for E protein accumulation. This observation prompted us to investigate whether other SARS-CoV-2 structural proteins regulate E. We found that the N and M proteins enabled E protein accumulation, whereas S did not. While γ1 34.5 protein prevented deleterious effects of E on the host cells, it had a negative effect on SARS-CoV-2 replication. The negative effect of γ1 34.5 was most likely associated with failure of SARS-CoV-2 to divert the translational machinery and with deregulation of autophagy. Overall, our data suggest that SARS-CoV-2 causes stress responses and subjugates these pathways, including host protein synthesis (phosphorylated eIF2α) and autophagy, to support optimal virus replication. IMPORTANCE In late 2019, a new ß-coronavirus, SARS-CoV-2, entered the human population causing a pandemic that has resulted in over 6 million deaths worldwide. Although closely related to SARS-CoV, the mechanisms of SARS-CoV-2 pathogenesis are not fully understood. We found that ectopic expression of the SARS-CoV-2 E protein had detrimental effects on the host cell, causing metabolic alterations, including shutoff of protein synthesis and mobilization of cellular resources through autophagy activation. Coexpression of E with viral proteins known to subvert host antiviral responses such as autophagy and translational inhibition, either from SARS-CoV-2 or from heterologous viruses, increased cell survival and E protein accumulation. However, such factors were found to negatively impact SARS-CoV-2 infection, as autophagy contributes to formation of viral membrane factories and translational control offers an advantage for viral gene expression. Overall, SARS-CoV-2 has evolved mechanisms to harness host functions that are essential for virus replication.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Autophagy , Protein Processing, Post-Translational , SARS-CoV-2/metabolism , Viral Proteins/genetics
16.
J Biol Chem ; 298(12): 102613, 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2069255

ABSTRACT

Phosphoserine (pSer) sites are primarily located within disordered protein regions, making it difficult to experimentally ascertain their effects on protein structure and function. Therefore, the production of 15N- (and 13C)-labeled proteins with site-specifically encoded pSer for NMR studies is essential to uncover molecular mechanisms of protein regulation by phosphorylation. While genetic code expansion technologies for the translational installation of pSer in Escherichia coli are well established and offer a powerful strategy to produce site-specifically phosphorylated proteins, methodologies to adapt them to minimal or isotope-enriched media have not been described. This shortcoming exists because pSer genetic code expansion expression hosts require the genomic ΔserB mutation, which increases pSer bioavailability but also imposes serine auxotrophy, preventing growth in minimal media used for isotopic labeling of recombinant proteins. Here, by testing different media supplements, we restored normal BL21(DE3) ΔserB growth in labeling media but subsequently observed an increase of phosphatase activity and mis-incorporation not typically seen in standard rich media. After rounds of optimization and adaption of a high-density culture protocol, we were able to obtain ≥10 mg/L homogenously labeled, phosphorylated superfolder GFP. To demonstrate the utility of this method, we also produced the intrinsically disordered serine/arginine-rich region of the SARS-CoV-2 Nucleocapsid protein labeled with 15N and pSer at the key site S188 and observed the resulting peak shift due to phosphorylation by 2D and 3D heteronuclear single quantum correlation analyses. We propose this cost-effective methodology will pave the way for more routine access to pSer-enriched proteins for 2D and 3D NMR analyses.

17.
Angewandte Chemie ; 134(40), 2022.
Article in English | ProQuest Central | ID: covidwho-2047453

ABSTRACT

Ubiquitin (Ub)‐like protein ISG15 (interferon‐stimulated gene 15) regulates innate immunity and links with the evasion of host response by viruses such as SARS‐CoV‐2. Dissecting ISGylation pathways recently received increasing attention which can inform related disease interventions, but such studies necessitate the preparation and development of various ISG15 protein tools. Here, we find that the leader protease (Lbpro) encoded by foot‐and‐mouth disease virus can promote ligation reactions between recombinant ISG15 and synthetic glycyl compounds, generating protein tools such as ISG15‐propargylamide and ISG15‐rhodamine110, which are needed for cellular proteomic studies of deISGylases, and the screening and evaluation of inhibitors against SARS‐CoV‐2 papain‐like protease (PLpro). Furthermore, this strategy can be also used to load ISG15 onto the lysine of a synthetic peptide through an isopeptide bond, and prepare Ub and NEDD8 (ubiquitin‐like protein Nedd8) protein tools.

18.
Magnetic Resonance ; 3(2):169-182, 2022.
Article in English | ProQuest Central | ID: covidwho-2030255

ABSTRACT

The paramagnetism of a lanthanoid tag site-specifically installed on a protein provides a rich source of structural information accessible by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy. Here we report a lanthanoid tag for selective reaction with cysteine or selenocysteine with formation of a (seleno)thioether bond and a short tether between the lanthanoid ion and the protein backbone. The tag is assembled on the protein in three steps, comprising (i) reaction with 4-fluoro-2,6-dicyanopyridine (FDCP);(ii) reaction of the cyano groups withα-cysteine, penicillamine or β-cysteine to complete the lanthanoid chelating moiety;and (iii) titration with a lanthanoid ion. FDCP reacts much faster with selenocysteine than cysteine, opening a route for selective tagging in the presence of solvent-exposed cysteine residues. Loaded with Tb3+ and Tm3+ ions, pseudocontact shifts were observed in protein NMR spectra, confirming that the tag delivers good immobilisation of the lanthanoid ion relative to the protein, which was also manifested in residual dipolar couplings. Completion of the tag with different 1,2-aminothiol compounds resulted in different magnetic susceptibility tensors. In addition, the tag proved suitable for measuring distance distributions in double electron–electron resonance experiments after titration with Gd3+ ions.

19.
13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, BCB 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2029545

ABSTRACT

During normal protein synthesis, the ribosome shifts along the messenger RNA (mRNA) by exactly three nucleotides for each amino acid added to the protein being translated. However, in special cases, the sequence of the mRNA somehow induces the ribosome to slip, which shifts the "reading frame"in which the mRNA is translated, and gives rise to an otherwise unexpected protein. Such "programmed frameshifts"are well-known in viruses, including coronavirus, and a few cases of programmed frameshifting are also known in cellular genes. However, there is no good way, either experimental or informatic, to identify novel cases of programmed frameshifting. Thus it is possible that substantial numbers of cellular proteins generated by programmed frameshifting in human and other organisms remain unknown. Here, we build on prior works observing that data from ribosome profiling can be analyzed for anomalies in mRNA reading frame periodicity to identify putative programmed frameshifts. We develop a statistical framework to identify all likely (even for very low frameshifting rates) frameshift positions in a genome. We also develop a frameshift simulator for ribosome profiling data to verify our algorithm. We show high sensitivity of prediction on the simulated data, retrieving 97.4% of the simulated frameshifts. Furthermore, our method found all three of the known yeast genes with programmed frameshifts. Our results suggest there could be a large number of un-Annotated alternative proteins in the yeast genome, generated by programmed frameshifting. This motivates further study and parallel investigations in the human genome. © 2022 ACM.

20.
Angew Chem Int Ed Engl ; 61(40): e202206205, 2022 10 04.
Article in English | MEDLINE | ID: covidwho-1990419

ABSTRACT

Ubiquitin (Ub)-like protein ISG15 (interferon-stimulated gene 15) regulates innate immunity and links with the evasion of host response by viruses such as SARS-CoV-2. Dissecting ISGylation pathways recently received increasing attention which can inform related disease interventions, but such studies necessitate the preparation and development of various ISG15 protein tools. Here, we find that the leader protease (Lbpro ) encoded by foot-and-mouth disease virus can promote ligation reactions between recombinant ISG15 and synthetic glycyl compounds, generating protein tools such as ISG15-propargylamide and ISG15-rhodamine110, which are needed for cellular proteomic studies of deISGylases, and the screening and evaluation of inhibitors against SARS-CoV-2 papain-like protease (PLpro). Furthermore, this strategy can be also used to load ISG15 onto the lysine of a synthetic peptide through an isopeptide bond, and prepare Ub and NEDD8 (ubiquitin-like protein Nedd8) protein tools.


Subject(s)
COVID-19 , Peptide Hydrolases , Animals , Catalysis , Cytokines/metabolism , Interferons , Lysine , NEDD8 Protein , Peptide Hydrolases/metabolism , Proteomics , SARS-CoV-2 , Ubiquitins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL